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Abstract— We are developing a randomized approach to test
generation for hybrid systems, and control systems in general,
inspired by the Rapidly-exploring Random Trees (RRTS)
technique from robotic motion planning which has proved
successful in solving high dimensional nonlinear problems.
The approach represents an automated analysis alternative
for systems where computing the reachable set is intractable.
The standard RRTs method creates a tree in the state space
by uniformly generating random sampling point and trying
to find inputs which connect them. In this paper we propose
a novel adaptive sampling strategy. We initially bias the
distribution so that states near the “unsafe” set are selected.
We continually monitor the growth of the tree. As the growth
rate of the tree declines we adjust the sampling distribution
to be less biased. This adaptive search strategy varies bias
between “greedy” and global, often finding test trajectories
more quickly than the traditional algorithm.

Index Terms— Motion Planning, Randomized Algorithms,
Hybrid Systems, Test Generation, Adaptive Biasing.

I. INTRODUCTION

Hybrid systems provide mathematical models of em-
bedded or software controlled physical systems. It is well
known that the interaction between discrete and continuous
time dynamics of such systems can produce rich and often
unexpected behavior. For this reason, as these systems grow
in complexity and sophistication, the need for automated
design tools increases. The focus to date in the literature
has been on the formal verification of safe operation, via
the solution of the reachability problem, initially through
symbolic methods [21], [13] and later through numerical
techniques [2], [1], [6], [19]. However, the class of hybrid
systems for which the reachability problem is tractable is
quite limited in both expressiveness and dimensionality.

Test generation — generation of the set of test inputs to
identify system faults and confirm correct system behavior
— is a relatively new approach to analyzing dynamic sys-
tems, whereas it is a well established concept for software
design [22]. Rather than prove system safety exhaustively,
our approach isto try to generate a set of test scenarios that
cause the system to satisfy a specification. A specification
is a certain property we intend to check. For example, a
specification is an unsafe set in safety verification problems.
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We are developing a randomized approach to test genera
tion for hybrid systems, and control systems in general,
using techniques from robotic motion planning which have
proved successful in solving high dimensional nonlinear
problems. The merit of this approach as compared with
exhaustively proving safety through reachability analysis
is that decidability issues do not come into play because
we are not attempting to represent the entire reachable set.
The drawback of the approach is that it is a semi-decision
method, meaning that we can only disprove system safety
by counter example — safety cannot be proved. Despite
this drawback randomized approaches hold great promise
for addressing complex nonlinear real-world problems for
which trial and error testing is not sufficient and formal
analysis is intractable.

The basic algorithm introduced here is inspired by the
Rapidly-exploring Random Trees (RRTs) [15], [16] tech-
nigue from robotic motion planning. The standard RRT
method creates a tree in the state space by uniformly
generating random sampling points and trying to find inputs
which connect them. Other sampling strategies which bias
the samples in a region closer to the goal state have been
tried in [17] and [5] with some success. However it is
difficult to decide on the biasing a priori. In many problems
a “greedy” goal biased approach will rapidly yield the
most obvious solution. However, in problems with dynamics
which are not small time locally controllable or state spaces
which are not simply connected a more global sampling
strategy is required to discover a solution trgjectory.

The primary contribution of this paper is to propose a
new adaptive sampling algorithm (Section 1V and V) which
adjusts the sampling distribution between heavily biased
toward the “unsafe”’ region (i.e., greedy) and the traditional
uniform distribution (i.e., global) depending on the growth
rate of the tree. The outline is as follows. In Section I,
we formally define the test generation problem for hybrid
systems. In Section |11 we point out the connection to robot
motion planning and review the RRT algorithm as well as
our previous work in the area, especialy with regard to
estimating coverage. Section 1V and V describe the new
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adaptive sampling agorithm— the primary contribution of
the paper. In Section VI some computational statistics for
the algorithm are presented for two example problems: the
thermostat problem from the hybrid system literature and a
problem involving an unmanned aerial vehicle.

Il. PROBLEM STATEMENT

Definition 2.1: We define a Finite Time Hybrid Con-
trol System (modified from the Hybrid Automata, see [18])
asatuple H = (X,Q,U,T, Init, f,Inv, E,G, R) where

o X C R¥ isaset of continuous variables;

e (Q C Nisaset of discrete variables which index the

system modes,

e U CR™ isacompact set of possible input values,

o T =[to,ty] C Risacompact timeinterval the system

evolves over;

e Init C X x @Q isaset of possible initial conditions;

o [:XxQxU — RY isavector field which prescribes

the time derivative of the continuous variables (i.e.,
T = f(a:,q,u));

o Inv:(Q — 2% assignsto each ¢ € Q an invariant set;

e F C Q x Q is a collection of edges describing the

possible discrete transition (ak.a- mode switches);

e G:FE — 2% assignsto each e = (¢,¢') € E a guard;

and

e R: Ex X — 2% assignstoeach e = (¢,¢') € E a

reset relation.
Throughout this paper we refer to (z, ¢) as the state of the
hybrid system. Note that we use the term “input signal” in
the most general sense in that it can include yet unspecified
feedback control inputs, human in the loop type inputs,
disturbances, etc.

Problem 2.2: Testing
(H,2°,4¢°,9), where

« H = (X,Q,U,T,Init, f,Inv, E,G,R) is a finite

time hybrid control system,

e 20,¢° € Init, and

o S is a specification set,

the goa is to determine an open loop control law U/ : T' —
U such that 3¢ € T for which (z(t),q) € S.
In other words, the goal is to determine a counter-example
— an input sequence which will cause the system to fail
by entering S — if one exists. However, in order to make
the problem algorithmically tractable, instead of searching
the set of all possible functions U/ : T — U, the search
must be restricted to some subset of functions with finite
dimensional parametrization.

For the sake of convenience we make three additional
assumptions. First, assume X x Q ¢ RN x N is defined in
such a way that a point in RV x N can be easily tested for
membership in X x Q). Second, assume the specification set
S can be defined as the sub-level set of some function S =
{(z,q)|r € X,q € Q,s(x,q) < 0}. Finaly, we restrict our
search over U to piecewise constant functions of time with
k segments, each of time duration o6t. Thus, instead of the

Problem: Given a tuple

continuous map U/, we consider the search over U : T — U,
as the search for a k-vector of parameters. With v’ € U

a=[ul,u?, ... uF]T

so the input u(t) is given by
u(t) =u' €U if to+ (i —1)6t <t < to+ (i)dt
fori=1,...,k.

[Il. BACKGROUND AND RELATED WORK
A. Motion planning and the RRT

Motivated by the similarities between the Testing Prob-
lem for hybrid systems introduced in Section Il and the
motion planning problem from the robotics literature (in
particular see [7]), we apply the Rapidly-exploring Random
Trees (RRTs) algorithm [15], [16] to the testing problem.
Figure 1 illustrates the concepts and a very basic algorithm
is given in Algorithms 1 and 2. Note that p is a suitable
metric function; and the notation (z,q) + f& flz,q,u)dt
means. using (z,¢) as an initial condition, smulate the
evolution of the system for &t seconds using u(t) € U as
the control input. Various versions of the algorithm can be
generated using different metrics (p) or random distributions
(referred to below as pdf ).

The benefits of the RRT agorithm are as follows.

o Because the algorithm works directly in the space of
admissible inputs, it is applicable to any type of control
system, unlike other algorithms [21] which are only
useful for systems with a specific structure.

« It has been shown [15] to be probabilistically complete,
meaning that, if the problem is solvable, the probability
of the algorithm finding a solution approaches one as
the number of nodes approaches infinity.

« Unlike testing schemes which use pure randomization
of the inputs the RRT agorithm exhibits a \Voronoi
Bias [16] — meaning that it quickly visits unexplored
regions of the state space.

This algorithm has experienced widespread success in solv-
ing a variety of high dimensional and nonlinear problemsin
motion planning and has recently been applied to controller
synthesis problems for hybrid systems.

Algorithm 1 Grow Test Set 7
Initialize RRT: 7 .addVertex(z°, ¢°)
while A(z,q) € T such that s(z,q) <0 do
Extend(7, pdf)
end while

B. Coverage measures

Because many testing problems have no solution we
must decide when to terminate Algorithm 1. One way
to decide when to terminate the algorithm is based on
how well the tree covers the state space. We review the
concept of coverage and developments from [8] here. The
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Fig. 1. The Testing algorithm (inspired by the RRT [15], [16]). The test
set is represented as a tree 7 with nodes as states (z, ¢) and edges as
inputs w € U. First a new state is generated at random, (z"@n®, grand)
(top left) from a given probability density function (denote as (pdf) ).
The algorithm then determines the closest state, (x™¢%", ¢™¢%") in the
tree to the random state (top right). It determines which v € U brings
(zmear g™eem) closest to (z7*"¢, ") (bottom left). n™e™ is applied
for a duration §¢ and the new node (z™¢%, ¢"¢") and edge n"™c" are
added to the tree (bottom right).

Algorithm 2 Extend(7, pdf)

mr(znd7 qrand - random(pdf)

xncar’ qnear - nearestNe'ghbor(/]" (xrand’ qrand) )
nztew = arg miHueU{P( (xrand, qrand)’ (xnear7 qnear)+
I f(x,q,u)dt)} N

( new7 qnew) _ (l.near’qnear) + f f(:v,q,n”ew(t))dt
T addVertex(z<® , g"<v)

’T.addEdge(n"ew, (:L,nea'r’ qnea'r') N (mnew7 qnew))

Discrepancy (a concept from the Monte Carlo literature) is
mentioned in [14] but it is too expensive to compute online.
Another appealing idea to measure the growth or coverage
of the RRTs is to compute the volume of the convex hull.
Unfortunately the convex hull is more indicative of the
distribution of the pointsthan it is of the coverage. In [17] a
variant of the convex hull is explored. Rather than compute
the hull of al tree vertices, vertices are grouped according
to their depth from parent nodes. The union of these
hulls clearly provides a better approximation. However the
selection of the grouping is somewhat arbitrary. It is not
clear how to relate the union to coverage due to possible
overlaps. Dispersion measures the largest unexplored region
(see [10] or more recently [14]), which was introduced in
the Monte Carlo literature. Assuming we have a sample set
X, which contains N points, over the space X, it is defined
as

w(X, p) = sup min p(z, 7) (1.2

reX zeX

and can be thought of as the radius of the largest empty
ball whose center lies in X. We reject it for computation
on two grounds: (1) it is impractical to compute in high
dimensions; and, (2) it is an overly conservative coverage
measure because it only considers the largest ball. For
example, in Figure 2 the left and right panels represent two
sample sets with the same dispersion. Obvioudly the sample
shown on the right covers the state better.

In [8] we introduced a new coverage measure which is
used in this paper as termination criteria for the Testing
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Fig. 2. Two sample sets which have the same dispersion (the radius of
the largest empty ball drawn with dashed line). The set on the left clearly
has inferior coverage to the set on right.

Fig. 3. A grid is superimposed on the state space. The shaded regions
indicate unreachable sets. The distances from the grid points to the closest
nodes are d; (shown as dashed arrows) and the grid spacing is 4.

Algorithm. We begin by overlaying a grid containing n,
points with spacing ¢ on the state space (see Fig. 3). We
calculate the minimum distance from each grid point j to
the set of nodes in the tree, d;. The quantity min(d;,d)
may be thought of as the radius of the largest ball centered
at each grid point which does not contain a tree node or
another grid point. Given a tree 7 we define its coverage
at the k" iteration of Algorithm 1 as

(d;,9)
6Zm1n

which isthe average of al the node distances, normalized by
the grid spacing. Our measureis similar to an approximation
of an “average” dispersion (see equation (111.1)), but far less
conservative and faster to compute. We can set a threshold,
such that if ¢(7;) < ¢ the algorithm should terminate. If
there are unreachable regions larger than a grid cell, ¢(7)
will approach a non-zero constant as £k — oo. In such a
case we look at the change in ¢ over the previous n. nodes

(11.2)

Acy = —(e(Th) = e(Then,))/ne. — (11.3)
And define a threshold such that if Ac;, < A the algorithm
should terminate. An exact relationships between ¢ and the
true coverage is unknown at present; but it would likely
require computing the reachable set which is, of course,
assumed to be unknown. Overall one of the advantages
of this measure is that, the grid size can be as fine or
coarse as one chooses. Finer grids will tend to require
more distance queries but are more accurate indications of
coverage. Of course grids can be generated in the “output”
or specification space to measure coverage there as well.
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C. Related work

Aside from general work on hybrid system verification
and software testing mentioned earlier, the idea of using test
generation, especially RRTSs, to analyze hybrid systems is
new. In [20] a genetic algorithm approach is used. The first
published work using RRTs for analyzing hybrid systems
is [5], [17]. In a similar vein, a blimp system control
law was validated under unpredictable but bounded distur-
bances [12]. In [4], the reachable set for aircraft collision
avoidance problem was obtained and severa extensions of
the RRT approach were mentioned. [3] applies the method
to biological networks and [8] is the first work to consider
synthesizing time invariant parameters in addition to inputs.
It aso is the first work to address the issue of estimating
coverage and termination criteria. However al of these
works use a fixed sample distribution.

1V. SAMPLE BIASING

Traditionally randomized motion planning algorithms use
a uniform sample distribution to generate z"*"¢ which
tends to grow the tree in such a way that the entire state
space is covered. In robot motion planning applications, the
presence of obstacles often precludes “greedy” solutions
which involve the robot proceeding directly to the goal.
The use of the uniform distribution increases the algorithm’s
robustness when solving problem in which the state space
is not convex or the system’s dynamics are not small time
locally controllable (STLC). However, when the state space
is convex and the system is small time locally control-
lable, using a uniform distribution entails much wasted
computation because the “obvious’ solution is not explored
immediately.

Since the goal in testing is to find trajectories which enter
the unsafe region and, unlike the motion planning problem,
we assume the state space is simply connected, another
option would be to use a distribution which was biased
in such a way to generate the majority of its samples in
the regions defined by s(z,¢) < 0 (in robotics this would
be akin to the goal region). The possible drawback of a
biased search scheme (or any greedy search strategy) is that
it can get stuck in “local minima” for non-small time locally
controllable systems. Since the notion of small time loca
controllability may be state, mode, or system dependent
and is difficult to assess the utility of biasing a priori, we
elect to use a parameterized distribution whose bias can be
easily altered. Our probability density function B(z; u, 5),
resembles a Gaussian over a compact domain, ¢ < = <
b. Define N (z;p,0(8)) as the Gaussian distribution with
mean p and standard deviation o. Define the probability
density function

N(z; 1, 0(8))+
Ci/(b—a), a<x<b
0 else

Blas u, ) = { (IV.D)

Bocp. B)

Fig. 4. Thedistribution B(z; p, 3) with . = 0 and various values of o.
Note that the function has compact support.

Thelast term, C;/(b—a), is added to ensure that the area
under the curve is equal to one. C; represents the area of
the truncated portions above x = b and below x = a.

Cy :/ N(x;,u,cr)d:z:Jr/ N(z;p,0)dz.
—o00 b

Obviously p should be selected so that s(u,q) < 0.
In Section V we discuss how to select o. Note that
by changing 0 < ¢ < oo we can effectively ater the
distribution to be completely deterministic (z"*"¢ = p),
completely uniform, or somewhere in between. Figure 4
illustrates the shape of B(x; u, 3) with different values of
o. Random states can be generated according to equation
(IV.1) by rejecting random points generated outside the
compact domain in conjunction with any standard random
normal generator in each dimension. Note that ¢"*"? can
be generated using a similar distribution and rounding the
result to the nearest integer.

V. ADAPTIVE SAMPLING ALGORITHM

An adaptive sampling algorithm should begin with a
biased search scheme and then, if the tree is growing
rapidly, maintain or increase the bias; if the growth rate
dows, a more uniform sampling strategy should be used.
To adjust the bias we dter o in equation (1V.1) using

0= (1 - 5)(‘7max -

where o.x and o, are user-defined values of the max-
imum and minimum standard deviations and 8 € [0,1] is
the biasing factor which we define below.

Intuitively, a large bias is effective in the RRT agorithm
when it is possible to steer the system to the set such that
s(z,q) < 0 while low bias is more advantageous when it
is difficult to do so. So we must gauge the ease with which
the system can be steered to a given state. We measure
how well biasing works by monitoring the growth of tree
when the random state is in the set satisfying s(z,¢q) < 0.
Consider Figure 5. The vector (z"e"4 — z"¢9") represents
the desired direction of tree growth in a given iteration of
Algorithm 1, while (z™¢* —z™¢") is the actua direction of
growth. Thereforeif the absolute value of the angle between
these two vectors, |0| is small the system is easily steered to
the random state; while |6| > /2 means that the tree is not

(V.2)

Umin) + Omin»
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growing in the desired manner. This quantity is convenient
because it is naturaly bounded, [0,7], and unitless. We
update the amount of biasing for every N, iterations of
the RRT algorithm, where N is user defined number. For
each of N iterations, we can compute the average of the
absolute value of 6 over the ng iterations where random
states are generated inside the set defined by s(z,q) < 0
and use this to compute the bias

m/2 — min((1/ng) 3°;% |63, 7/2)
/2

where 6, ...,0,, are angles measured at each iteration.
However, for systems whose state does not evolve over the
Euclidean space, there is no meaningful way to compute
such an angle. A more general notion of measuring the
ease of steering the system to a given state is depicted
in Figure 6. If in a given iteration p(z"¢%",z"%"d) >
p(xzmew, zmemd) where p is a metric function, we call such
an iteration successful because the tree has grown toward
2" \We count the number of successful iterations n,, out
of the ng iterations and compute

g
ng
If 2™<" isunsuccessful or the best candidate for z™¢* from
"¢ s already in atree in the above test, we eliminate the
™" from consideration as x™¢*" for the testing in future
iterations to prevent it from being chosen repeatedly.
The appropriate definition of 3 can be used in Algo-
rithm 3 to adaptively alter the bias.

8=

(V.2)

(V.3)

Algorithm 3 Grow Test Set 7

Initialize RRT: 7 .addVertex(z°, ¢°)

c=o00, Ac=o00, =1

while (B(z,q) € T st. s(z,q) <0 Ac>c A Ac> A

do
o= (]- - /6)(Umax -
pdf = B(z; 1, B)
Extend(7, pdf)
Compute ¢, Ac
if new iteration set then

Update 3

end if

end while

Return 7

Umin) + Omin,

VI. EXAMPLES

In this section we solve two example problems and exam-
ine the computational efficiency of the adaptive sampling al-
gorithm compared to fixed biasing approaches. Specifically
each example problem is solved 10 times using Algorithm 3.
For comparison purposes the same problems are also solved
10 times using a variety of traditional, fixed sampling
distribution RRT methods such as the one in Algorithm 1.
The fixed bias solutions are computed using the distribution

Fig. 5. If |6] is smal on average (close to zero) it is an indication that
the system can be steered in the desired direction and a biasing strategy
is appropriate. If |§] > /2 it is an indication that the system cannot be
steered in the desired direction and a more uniform sampling strategy is
appropriate.

Fig. 6. A generalization of Figure 5 involves comparing two distances
to determine if the tree is successfully growing. If p(z"ee”, zrand) >
p(z™ew, xrend) the iteration is considered successful.

in equation (1V.1), with o = {1(b—a),3(b—a),6(b—a)} —
heavy bias, medium bias, and a nearly uniform distribution.
The fixed bias approach is similar to [17]. The average
number of tree nodes and total computation time on a
1GHz PC are tabulated. In each problem, we set 1 so that
it was in the center of the region .S, defined by s(z,q) < 0.
U was discretized into 100 possible values and the n™<®
was computed by exhaustive search. The algorithm in [9]
was used to detect states in S. All trials converged to a
solution.

A. Example 1: the thermostat

The hybrid automata model of a thermostat has been a
popular example in the verification literature [11]. Figure 7
shows the system model. The discrete state space consists of
two modes @ = {1,2} which denote the hester being “on”
or “off” respectively. X c R? where z; is the temperature
in the room, z- is the elapsed time, and z3 is a timer that
measures the cumulative amount of time the heater has been
on for. U consists of w,, = [2,4]; and w,f¢ = [—3, —1].
The values u,,, and u,s; represent the possible heating and
cooling rates in the two modes. They are unknown due
to unmodeled disturbances. The guards g., : ;1 < 1 and
Je, : 1 > 3 are associated with the edges e; : 2 — 1 and
es : 1 — 2 respectively. They represent the temperature
at which the heater should turn on or turn off. In [11] a
symbolic verification tool is used to answer the question:
“After an initialization period of two minutes, is it possible
for the heater to be on for more than two thirds of the total
time at any point during the first hour of operation?’ Such
a question may be important from an energy consumption
point of view. Therefore the specification set S, defined by
s(z,q) <0, is

S:{Sl:$€X|—2/3$2+x320/\82:%2—220}.

Aside from being a classica verification example, the
scenario is interesting for two reasons. First, the system

1170



\\\\\

Fig. 8. The solution of the thermostat counter example via the randomized
agorithm.

has quite nontrivial dynamics, since the discrete dynamics
play a significant role in system behavior. For example the
choice of wu,, Or u.r¢ ONly influences x; which does not
explicitly appear in S. It isonly by influencing the switching
behavior that the inputs change S. Second, the set of all
“bad” trajectories only intersects the failure region by avery
small margin, making the hunt for a counter example quite
difficult.

Note that the true solution lies in the function space of
piecewise constant inputs, so our approximation of U in no
way impacts the solution. The test generator algorithm suc-
cessfully computed a counter example as seen in Figure 8.
The initial conditions were ¢° = 1 (on), 2° = [2 0 0]7.
We use N, = 30 and n. = 30 to ensure that the means
and differences were statistically significant, with ¢ = 0.01
and A = 0.01. The Euclidian distance was used for metric.
06 is computed via (V.2). Table | shows the computational
statistics for the various distributions. The adaptive strategy
is dlightly better than the fixed heavy bias and far superior to
the other fixed bias distributions by a factor of two or more.
It is important to stress that there is no way to know which
bias level is most effective a priori for a given problem so
the adaptive method is most appropriate.

B. Example 2: hovercraft

For our second example we consider a scenario in which
we would like to determine if a hovercraft (see Figure
9) under high wind conditions reaches some “bad” region
such as a turbulent area. We denote it by goa region. We
assume constant altitude flight so the craft has 6 states,
x = (1, 22,0,v1,v2,w) and the dynamic equations are

m’[}l (fl + f2) COS(Q) + fa:lair x, 'Uair(-r))
moe = (f1 + f2)sin(0) + froair (@, Vair(x))
Jw = (f27f1)l+7—air(x7vair(z))

Sampling Method | No. of Nodes | Computation time (sec)
Uniform 356 126.4
Med. Bias 164 67.3
Heavy Bias 112 40.4
Adaptive Bias 88 371
TABLE |

THERMOSTAT EXAMPLE: A COMPARISON OF THE SAMPLING
STRATEGY INTRODUCED HERE (ADAPTIVE BIAS) TO OTHER
FIXED-BIAS SAMPLING STRATEGIES, AVERAGED OVER 10 TRIALSON A
1GHz PC.

L4

Fig. 9. Hovercraft with two thrusts

X1

The control inputs are v = [f; f2]? (forward actuating
forces) and U = [—10, 10] x [—10, 10]. Forces due to wind
disturbances in the z;, xo and 6 directions are f., qir,
froair, @A 74, WhoSe exact expressions are omitted for
brevity but are quadratic in the difference between the
craft's velocity and the wind velocity v,;, and vary with
the orientation of the craft. Note that the state is partitioned
into two regions (indoor and outdoor) which define the wind

velocity differently:
o[ [rawws Buan]”, (1) + (22)% < 100
" [00]%, (21)2 + (22)2 > 100 °

The biasing factor 3 is computed via (V.3). The initial
state is [0 0 0 0 0 0]7 and the goal region, which is the
specification set, is z; € [190, 200], z2 € [0, 10]. Ny = 50
and n. = 50 are used with ¢ = 0.01 and A = 0.01.

Figure 10 shows the solutions of the problem with
the uniform sampling distribution and adaptive algorithm.
Figure 11 shows how S changes as the algorithm evolves.
Intuitively biasing is not effective in mode 1 when the craft
is subject to high wind forces but it is very effective when
there is no wind in mode 2. The adaptive algorithm is able
to exploit the situations in which biasing is effective. As
shown in Table Il, adaptive biasing algorithm improves the
efficiency of RRT method compared to other bias strategies
rather dramatically.

Sampling Method | No. of Nodes | Computation time (sec)
Uniform 3556 17535
Med. Bias 1017 490.2
Heavy Bias 912 408.3
Adaptive Bias 678 3425
TABLE Il

HOVERCRAFT EXAMPLE: A COMPARISON OF THE SAMPLING
STRATEGY INTRODUCED HERE (ADAPTIVE BIAS) TO FIXED-BIAS
SAMPLING STRATEGIES, AVERAGED OVER 10 TRIALSON A 1GHz PC.
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Fig. 10. RRTs of the hovercraft problem with uniform sampling (left)
and with adaptive bias (right).
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Fig. 11. The evolution of the bias 3 for the hovercraft problem.

VII. CONCLUSION

In this paper we introduce the idea of test generation
for hybrid systems, and control systems in genera, as a
practical aternative for scenarios in which verification via
reachability is not practical. The goal is to search for a
single unsafe trgjectory — a counter example to the safety or
performance specification. The Rapidly-exploring Random
Trees (RRTs), a well established algorithm in robot motion
planning, was applied to a classical verification problem
with considerable success. Two novel refinements to the
traditional incarnation of the RRT algorithm are introduced
to adapt the method to the unique features of the problem of
test generation. First we introduced a novel on-line method
of computing the coverage of the state space by the random
tree. The method closely approximates known coverage
measures and is efficient to compute. Because the algorithm
is a semi-decision process the coverage measure is useful as
termination criteria. In addition we proposed a new measure
of tree growth which is used to alter the search process.
Traditionally RRT methods generate samples according to
a uniform distribution. We use the growth measures to
adjust the distribution adaptively. As the growth rate of the
tree declines we adjust the sampling distribution to be less
biased. This adaptive search strategy varies bias between
“greedy” and global, often finding test trgjectories more
quickly than the traditional algorithm.

REFERENCES

[1] Thomas A.Henzinger, Benjamin Horowitz, Rupak Majumdar, and
Howard Wong-Toi. Beyond HyTech: Hybrid systems analysis using
interval numerica methods. In Hybrid Systems : Computation and
Control, volume 1790 of Lecture Notes in Computer Science, pages
130-144. Springer Verlag, 2000.

(2]

(3]

(4]

(9]

(6]

(8

(9]

[10]

(1]

[12]

[13]

[14]

[19]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

1172

E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification
of hybrid systems. In Computer Aided \erification, volume 2404 of
Lecture Notes in Computer Science, pages 365-370. Springer Verlag,
Copenhagen, 2002.

Calin Belta, Joel M. Esposito, Jongwoo Kim, and Vijay Kumar.
Computational techniques for anaylsis of genetic network dynamics.
To appear in International Journal of Robotics Research.

Amit Bhatia and Emilio Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. In HSCC,
volume 2993 of Lecture Notes in Computer Science, pages 142—156.
Springer, 2004.

Michael S. Branicky, Michael M. Curtiss, Joshua Levine, and Stuart
Morgan. RRTs for nonlinear, discrete, and hybrid planning and
control. December 2003.

Oleg Butchkarev and Stavros Tripakis. Verification of hyrbid systems
with linear differential inclusions using ellipsoidal approximations. In
Hybrid Systems : Computation and Control, volume 1790 of Lecture
Notes in Computer Science, pages 73-88. Springer Verlag, 2000.

P. Cheng and S. M. Lavalle. Reducing metric sensitivity in random-
ized trajectory design. In Proceedings of |IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 43-48, 2001.
Joel M. Esposito, Jongwoo Kim, and Vijay Kumar. Adaptive RRTs
for validating hybrid robotic control systems. In International
Workshop on the Algorithmic Foundatiosn of Robotics 2004, Zeist,
Netherlands, 2004.

Joel M. Esposito, George J. Pappas, and Vijay Kumar. Accurate event
detection for simulating hybrid systems. In M.D. Di Benedetto and
A. Sangiovanni-Vincentelli, editors, Hybrid Systems : Computation
and Control, volume 2034 of Lecture Notes in Computer Science,
pages 204-217. Springer Verlag, 2001.

J. H. Hdton. On the efficiency of certain quasi-random sequences
of points in evaluating multi-dimensional integrals. Numer. Math.,
(2):84-90, 1960.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model checker for hybrid systems. International
Journal on Software Tools for Technology Transfer, 1(1-2):110-122,
1997.

Jongwoo Kim, Jim Keller, and Vijay Kumar. Design and verification
of controllers for airships. IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2003.

Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic
reachability computation for families of linear vector fields. Journal
of Symbolic Computation, 32:231-253, 2001.

Steven M. LaValle and Michael S. Branicky. On the relationship be-
tween classical grid search and probabilistic roadmaps. In Workshop
on the Algorithmic Foundation of Robotics (WAFR). December 2002.
Steven M. LaValle and James J. Kuffner. Randomized kinodynamic
planning. International Journal of Robotics Research, 20(5):378—
400, 2001.

Steven M. Lavalle and James J. Kuffner. Rapidly exploring random
trees: Progress and prospects. In B. Donald, K. Lynch, and D.Rus,
editors, Algorithmic and computational robotics: new directions,
pages 293-308. A K. Peters, Wellesley, MA, 2001.

Joshua A. Levine. Sampling-based planning for hybrid systems.
Master’s thesis, Case Western Reserve University, September 2003.
John Lygeros and George Pappas. A tutorial on hybrid systems:
Modeling, analysis and control. 14th |EEE International Symposium
on Intelligent Control/Intelligent Systems and Semiotics, September
1999.

lan Mitchell and Claire Tomlin. Level set methods for computation
in hybrid systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems : Computation and Control, volume 1790 of Lecture Notes
in Computer Science, pages 310-323. Springer Verlag, 2000.
Q.Zhao, B.H.Krogh, and PHubbard. Generating test inputs for em-
bedded control systems. |IEEE Control Systems Magazine, 23(4):49—
57, 2003.

R.Alur, T.A.Henzinger, and P-H Ho. Automatic symbolic verification
of embedded systems. |EEE Transactions on Software Engineering,
22:181-201, 1996.

Hong Zhu, Patrick A. V. Hall, and John H.R. May. Software unit
test coverage. ACM Computing Surveys, 29(4):366-427, 1997.



